CROSS-LINKING OF SURFACE IMMUNOGLOBULIN ON B LYMPHOCYTES INDUCES BOTH INTRACELLULAR Ca²⁺ RELEASE AND Ca²⁺ INFLUX: ANALYSIS WITH INDO-1

Martin K. Bijsterbosch, Kevin P. Rigley and Gerry G.B. Klaus

National Institute for Medical Resarch, Mill Hill, London NW7 1AA, U.K.

Received April 1, 1986

SUMMARY: The new ${\rm Ca^{2+}}$ -probe indo-1 has a high fluorescence intensity, which allows low intracellular dye loadings. Stimulation of indo-1-loaded mouse B cells with anti-Ig antibodies provoked rapid rise of free cytoplasmic Ca2+ from 100 nM to >1 μ M, followed by a decline to a plateau at 300-400 nM. The initial rapid rise was not detected in quin2-loaded cells, presumably due to the ${\rm Ca^{2+}}$ -buffering effects of the dye. The sustained Ca2+ increase was due to influx, whereas the initial rise was caused by release from intracellular stores. The magnitudes of ${\rm Ca^{2+}}$ release and inositol trisphosphate release were closely correlated. Concanavalin A does not provoke inositol trisphosphate release in mouse B cells. It did not induce a rapid initial ${\rm Ca^{2+}}$ rise in indo-1-loaded B cells either, but only a sustained increase to 200-300 nM. Finally, ${\rm Ca^{2+}}$ influx induced by both anti-Ig and concanavalin A were not affected by membrane depolarization ${\rm Ca^{1+}}$ ress, Inc.

A wide variety of ligands induce in their target cells a rapid rise in cytoplasmic free ${\rm Ca}^{2+}$ (${\rm [Ca}^{2+}]_i$). This is generally associated with degradation of phosphatidylinositol bisphosphate (${\rm PIP}_2$) to diacylglycerol and inositol trisphosphate (${\rm IP}_3$), and recent evidence indicates that ${\rm IP}_3$ causes (part of) the increase in ${\rm [Ca}^{2+}]_i$ by releasing ${\rm Ca}^{2+}$ from intracellular stores [1].

The most popular current method for measuring $[{\rm Ca}^{2+}]_i$ is to monitor the fluorescence of intracellularly trapped quin2 [2]. Quin2 has, however, some limitations, the most serious being a low fluorescence intensity. To overcome cell autofluorescence, it is therefore neccessary to load relatively large amounts of the dye into cells, which significantly buffers $[{\rm Ca}^{2+}]_i$ transients.

Recently, Ca²⁺ indicators with high fluorescence intensities have been developed, which can be used at much lower concentrations [3]. We have now

ABBREVIATIONS USED: Anti-Ig, anti-immunoglobulin antibodies; [Ca²⁺]i, free cytoplasmic Ca concentration; Con A, concanavalin A; IP3, inositol trisphosphate; PIP2, phosphatidylinositol bisphosphate.

used one of them, indo-1, to study $[Ca^{2+}]_i$ in murine B lymphocytes incubated with anti-immunoglobulin antibodies (anti-Ig) or concanavalin A (Con A). Anti-Ig stimulates quiescent B cells to enter cell cycle by cross-linking their antigen receptors. It induces rapid breakdown op PIP_2 , and increases $[Ca^{2+}]_i$ in these cells [4]. Con A also causes B cell activation, but only provokes Ca^{2+} mobilization, with minimal breakdown of PIP_2 [M.K. Bijsterbosch and G.G.B. Klaus, submitted]. These earlier studies, using quin2, suggested that the $[Ca^{2+}]_i$ increase induced by both agents was largely due to influx. We now show that quin2 does not detect a rapid, IP_3 -mediated intracellular release of Ca^{2+} induced by anti-Ig, which can be readily demonstrated with indo-1.

EXPERIMENTAL

Reagents: Indo-1 (acetoxymethyl ester and potassium salt) was from Molecular Probes, Junction City, Or, U.S.A. Quin2 acetoxymethyl ester was from Amersham International, Amersham, U.K. Quin2 (free acid) and Con A (type V) were from Sigma, St. Louis, Mo, U.S.A. Molar absorption coefficients of indo-1 and quin2 were taken from refs. 3 and 5. Affinity-purified F(ab')₂ fragements of rabbit anti-mouse Fab antibodies, henceforth called anti-Ig, were prepared as described previously [4]. All other chemicals were analytical grade.

Cell preparations: Splenic B cells (ca. 90% surface Ig-positive) were prepared from 3-6 months old male (CBA \times C57BL/10) F_1 mice by killing T cells and removing adherent cells as described earlier [4].

Assay of inositol trisphosphate: Levels of $[^3H]IP3$ in B cells prelabelled with $[^3H]$ inositol were measured as described in detail earlier $[^4]$.

Determination of free Ca $^{2+}$ in vitro: Quin2 and indo-1 were dissolved in buffers containing 120 mM KCl, 20 mM NaCl, 1 mM MgCl $_2$, 10 mM MOPS, and 1 mM EGTA plus 0.1-0.9 mM CaCl $_2$ (pH 7.05) to final concentrations of 0.5 and 6.5 μ M, respectively. Their fluorescences were measured using a Perkin Elmer MPF-4 spectrofluorimeter in a cell kept at 37 °C. Excitation and emission wavelengths were 339 and 500 nm for quin2, and 340 and 390 nm for indo-1. The signals were calibrated by adding CaCl $_2$ to approx. 0.5 mM excess (for Fmax), followed by setting free Ca $^{2+}$ to <1 nM by adding EGTA and Tris to 10 and 40 mM (for Fmin). Free Ca $^{2+}$ concentrations in the buffers were calculated from the observed fluorescence F by:

$$Ca^{2+}= Kd \times [(F-F_{min})/(F_{max}-F)]$$

The Kd values for quin2 and indo-1 under these conditions were taken to be 115 nM and 250 nM, respectively [2,3].

Determination of [Ca²⁺]i: Cells at 50 x $10^6/\text{ml}$ in Hanks' balanced salt solution, containing 0.5% gelatin and 20 mM HEPES (pH 7.2), received the acetoxymethyl esters of quin2 or indo-1 to final concentrations of 2 or 15 μM , respectively. Both were added from stock solutions in DMSO (final DMSO concentration <0.25%). After 45 min at 37 °C, the cells were washed twice and resuspended to 5-10 x $10^6/\text{ml}$ in Hanks' solution containing 0.5% bovine serum albumin and 10 mM HEPES (pH 7.3). Cell viability was >98%. The suspensions were stored on ice until use. Under these conditions, leakage of quin2 and indo-1 from the cells was <1 % per hour. Shortly before fluorescence measurements, aliquots were washed and resuspended to 5-10 x $10^6/\text{ml}$ in Hanks' solution plus 10 mM HEPES (pH 7.3). After 5-10 min preincubation at 37 °C, fluorescence was measured as described above. The suspensions were stirred

periodically during measurements. After each run, F_{max} was obtained by lysing the cells with 0.05% Triton X-100 in the presence of 10 uM diethylenetriaminepentaacetic acid. F_{min} was determined by subsequent addition of EGTA and Tris as above (for indo-1) or MnCl₂ to 0.2 mM (for quin2, F_{min} corrected for effect of Mg²⁺) .[Ca²⁺]i was calculated with the formula given above. Intracellular dye loads were determined comparing fluorescences of cell lysates and known concentrations of the dyes and assuming a cellular volume of 110 um³ [6].

RESULTS

The free ${\rm Ca}^{2+}$ concentrations measured by quin2 and indo-1 were compared in buffers in which free ${\rm Ca}^{2+}$ levels were varied by altering ${\rm Ca}^{2+}/{\rm EGTA}$ ratios. Fig. 1 shows that over the biologically important range of 40-1000 nM the free ${\rm Ca}^{2+}$ concentrations measured by indo-1 and quin2 are strongly correlated. Levels measured with quin2 were, however, $16 \pm 2\%$ (means \pm S.E.M., n=18) lower than those measured with indo-1. This small discrepancy is probably due to minor inaccuracies in the ${\rm K}_{\rm d}$ values of the dyes.

Subsequently, B cells were loaded with either quin2 or indo-1. The resting values measured with quin2 and indo-1 were very similar: 107 ± 4 nM and 114 ± 3 nM, respectively (means \pm S.E.M., n=12). When cells loaded with indo-1 were stimulated with anti-Ig, $[Ca^{2+}]_i$ rose within 30 sec to a maximum of >1 μ M and then rapidly declined to a plateau of 300-400 nM (Fig. 2A, left panel). In quin2-loaded cells, $[Ca^{2+}]_i$ rose to the plateau at 300-400 nM, but the rapid transient increase was not detected. This is presumably because the dye loading (1.42 \pm 0.14 mM; means \pm S.E.M., n=4), and thus Ca^{2+} -buffering, in

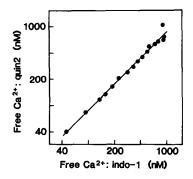


Figure 1: Free Ca^{2+} levels measured with quin2 and indo-1 in vitro. The levels of free Ca^{2+} in a series of Ca^{2+} /EGTA buffers was measured with quin2 and indo-1 as described in detail in the Experimental section. Each point gives free Ca^{2+} levels measured with both quin2 and indo-1 in a particular buffer (results from two separate experiments).

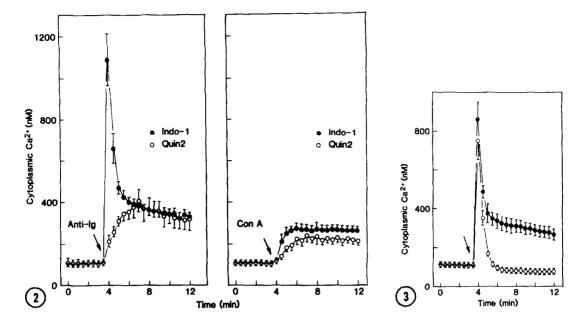


Figure 2. Effects of anti-Ig and Con A on [Ca $^{2+}$]i in B cells loaded with quin2 or indo-1. B cells containing indo-1 (①) or quin2 (O) received anti-Ig and Con A as indicated (final concentrations 50 and 2.5 μ g/ml, respectively). Intracellular dye loadings were 1.42 \pm 0.14 mM and 0.09 \pm 0.01 mM for quin2 and indo-1, respectively. [Ca $^{2+}$]i was calculated from the fluorescence signals, which were corrected for dilution due to additions made, as decribed in the Experimental section. [Ca $^{2+}$]i in controls (medium added) did not change appreciably. Results are means \pm S.E.M. of 4 replicates obtained from 4 separate experiments.

Figure 3. Effects of anti-Ig on $[Ca^{2+}]_i$ in B cells in the presence of normal and low extracellular Ca^{2+} . B cells were loaded with indo-1 and incubated in normal medium (1.3 mM Ca^{2+}). At the time indicated by the arrow, anti-Ig was added to 50 μ g/ml. Approx. 15 sec before this addition, the cells received BGTA to 1.8 mM (0), or medium (4). Addition of EGTA immediately reduced extracellular Ca^{2+} to <250 nM. $[Ca^{2+}]_i$ was calculated as in Fig. 2. Results are means + S.E.M. of 3 replicates obtained from 3 separate experiments.

these cells was much higher than in cells containing indo-1 $(0.09 \pm 0.01 \text{ mM};$ means \pm S.E.M., n=4). Addition of Con A to B cells, on the other hand, yielded very similar results in cells loaded with either dye (Fig. 2, right panel).

We next studied the contributions of extracellular and intracellular Ca^{2+} to the response induced by anti-Ig in indo-1-loaded B cells (Fig. 3). After reduction of extracellular Ca^{2+} to <250 nM by EGTA, the rapid transient increase in $[Ca^{2+}]_{\dot{1}}$ was unaffected, but the sustained increase seen in the presence of extracellular Ca^{2+} was completely abolished.

These results suggest that the rapid transient $[Ca^{2+}]_i$ rise is due to release of Ca^{2+} from intracellular stores. Recent studies indicate that IP_3 causes the release of Ca^{2+} from intracellular stores [1,7]. We therefore

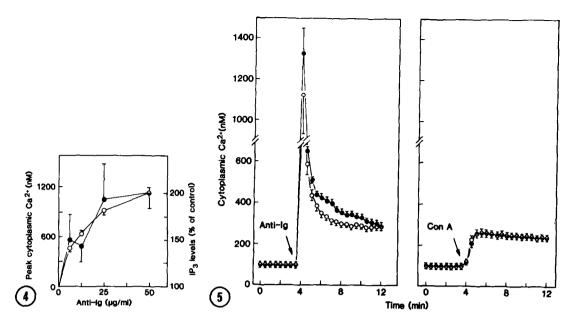


Figure 4. Dose-dependence of induction of peak [Ca²⁺]i and IP3 release by anti-Ig. Indo-1-loaded B cells were stimulated with 0-50 µg/ml anti-Ig. [Ca²⁺]i reached maximum values after approx. 30 sec, and is given (0) with control levels (medium added: 104 ± 5 nM) subtracted. [3H]IP3 levels (①) were determined 30 sec after adding 0-50 µg/ml anti-Ig to [3H]inositol-labelled B cells. The results are expressed as % of the levels found with medium alone: 0.19 ± 0.01 % of the total cellular radioactivity (108,000 dpm). All points are means \pm S.E.M. of 4 replicates from 4 separate experiments.

Figure 5. Effects of anti-Iq and Con A on [Ca²⁺]i in B cells in the presence of normal and high extracellular K* levels. Indo-1-loaded B cells in normal medium (0; 6 mM K*, 142 mM Na*) or high K* medium (0; 70mM K*, 78 mM Na*) received anti-Iq or Con A as indicated (final concentrations 50 and 2.5 µg/ml, respectively). [Ca²⁺]i was calculated as in Fig. 2. Points are means + S.E.M. of 3 replicates from 3 separate experiments.

compared the magnitude of the initial $[{\rm Ca}^{2+}]_i$ peak induced by increasing doses of anti-Ig with changes in ${\rm IP}_3$ levels. Fig. 4 shows that these two responses are closely correlated.

The sustained increase in $[{\rm Ca}^{2+}]_i$ is apparently due to influx of extracellular ${\rm Ca}^{2+}$. Since in many other cell types influx of ${\rm Ca}^{2+}$ is controlled by the cell membrane potential [8], we studied $[{\rm Ca}^{2+}]_i$ in indo-1-loaded cells in media containing normal (6 mM) and depolarizing (70 mM) concentrations of ${\rm K}^+$ (Fig. 5). Resting $[{\rm Ca}^{2+}]_i$ values were the same in cells in normal and high ${\rm K}^+$ medium (103 \pm 3 nM; means \pm S.E.M., ${\rm n}=$ 9). Depolarization had only a slight effect on ${\rm Ca}^{2+}$ influx in cells stimulated with anti-Ig, whereas the response induced by Con A was not affected at all.

DISCUSSION

Our data clearly demonstrate that the new Ca²⁺ probe indo-1 is a much better tool than quin2 for measuring [Ca²⁺]_i in living cells. Using indo-1, we show that anti-Ig induces in B cells an extremely rapid, massive release of Ca²⁺ from intracellular stores (which is presumably IP₃-mediated), followed by prolonged influx of extracellular Ca²⁺. The rapidity of the initial response indicates that the cells respond quite synchronously to stimulation.

The main advantage of indo-l over quin2 is its much brighter fluorescence, which allows lower dye loadings. The resulting lower Ca²⁺-buffering allowed detection in indo-l-loaded cells of a rapid transient rise in [Ca²⁺]_i that was not seen with quin2 (Fig. 2). Another major feature of indo-l is that Ca²⁺ alters the wavelength of its fluorescence emission, which allows Ca²⁺ determinations to be made by measuring the emission ratios at two wavelengths [3]. However, this method requires sophisticated instrumentation. The method we employ, measuring emission at one wavelength followed by cell destruction and calibration, uses a standard spectrofluorimeter. Its validity is apparent from Figures 1 and 2.

We found that the rapid transient rise in $[{\rm Ca}^{2+}]_i$ induced by anti-Ig in indo-1-loaded cells is due to release of ${\rm Ca}^{2+}$ from intracellular stores. In a wide variety of cell types (including B cells), addition of exogenous ${\rm IP}_3$ to permeabilized cells provokes the release of ${\rm Ca}^{2+}$ from intracellular stores [1,7]. A comparison of the capacity of various doses of anti-Ig to induce ${\rm IP}_3$ release and the initial ${\rm [Ca}^{2+}]_i$ peak revealed a close correlation (Fig. 4). Our ${\rm IP}_3$ assay does not distinguish between ${\rm IP}_3$ isomers, but in earlier experiments (done with M. Berridge and J. Heslop) we found that anti-Ig induces mainly release of 1,4,5-IP $_3$, the isomer capable of inducing intracellular ${\rm Ca}^{2+}$ release [1]. Our data therefore support the hypothesis that mobilization of intracellular ${\rm Ca}^{2+}$ by anti-Ig is mediated by 1,4,5-IP $_3$ generated from degradation of ${\rm PIP}_2$. This view is further corroborated by the finding that ${\rm Con}$ A, which does not provoke substantial ${\rm IP}_3$ release in B cells, fails to induce the transient ${\rm [Ca}^{2+}]_i$ rise (Fig. 2).

There are various mechanisms regulating the influx of Ca^{2+} into cells [8]. Some cell types possess voltage-gated Ca2+ channels. Depolarization of their plasma membranes leads to massive Ca²⁺ influx, which can be inhibited by Ca²⁺ channel blockers like verapamil [9]. Others have Ca²⁺ channels that open by a voltage-sensitive mechanism upon ligation of receptors on their surface [10]. Entry of Ca²⁺ via these channels can also be inhibited by the blockers mentioned above. In yet other cell types, resting and stimulated Ca²⁺ levels are unaffected by membrane depolarization, nor is influx of Ca²⁺ susceptible to inhibition by Ca²⁺ channel blockers [11]. The depolarization experiments (Fig. 5), plus the lack of effect of verapamil (not shown), indicate that mouse B cells belong to the latter group. The results of Clevers et al. [12], who found that Ca²⁺ channel blockers inhibit anti-Ig-induced [Ca²⁺]; increase in human B cells, suggest, however, that there may be species differences.

ACKNOWLEDGMENTS: M. K. Bijsterbosch and K. Rigley were supported by fellowships from the Wellcome Trust. We wish to thank Mary Holman for her technical assistance.

REFERENCES

- 1. Berridge, M. (1984) Biochem. J. 220, 345-360
- Tsien, R.Y., Pozzan, T. and Rink, T. (1982) J. Cell Biol. 94, 325-334 2.
- Grienkiewicz, G., Poenie, M. and Tsien, R.Y. (1985) J. Biol. Chem. 260, 3440-3450
- 4. Bijsterbosch, M.K., Meade, C.J., Turner, G.A. and Klaus, G.G.B. (1985) Cell 41, 999-1006
- Tsien, R.Y. (1980) Biochemistry 19, 2396-24046 5.
- De Franco, A.L., Kung, J.T. and Paul, W.E. (1982) Immunol. Rev. 64, 161-182
- Ransom, J.T., Harris, L.K. and Cambier, J.C. (1986) J. Immunol., in press
- 8. Towart, R. and Schramm, M. (1985) Biochem. Soc. Symp. 50, 81-95
- 9. Taylor, W.M., van de Pol, E., van Helden, D.F., Reinhart, P.H. and Bygrave, F.L. (1985) FEBS Lett. 183, 70-74
- 10. Oettgen, H.C., Terhorst, C., Cantley, L.C. and Rosoff, P.M. (1985) Cell 40, 583-590
- 11. Doyle, V.M. and Ruegg, U.T. (1985) Biochem. Biophys. Res. Comm. 127, 161-167
- 12. Clevers, H.C., Bloem, A.C., Gmelig-Meyling, F. and Ballieux, R.E. (1985) Scan. J. Immunol. 22, 557-562